论文标题

3D医学成像的自我监督方法

3D Self-Supervised Methods for Medical Imaging

论文作者

Taleb, Aiham, Loetzsch, Winfried, Danz, Noel, Severin, Julius, Gaertner, Thomas, Bergner, Benjamin, Lippert, Christoph

论文摘要

自我监督的学习方法在证明在多个应用领域成功后,目睹了最近的兴趣激增。在这项工作中,我们利用这些技术,并以代理任务的形式为五种不同的自我监督方法提出了3D版本。我们的方法促进了神经网络的特征从未标记的3D图像学习,旨在降低专家注释所需的成本。开发的算法是3D对比预测编码,3D旋转预测,3D拼图拼图,相对3D斑块位置和3D示例网络。我们的实验表明,与从头开始训练模型并在2D切片上预处理模型相比,使用3D任务进行预处理模型可以更加准确,更有效地解决下游任务。我们证明了我们的方法对来自医学成像域的三个下游任务的有效性:i)从3D MRI,ii)从3D CT和III)胰腺肿瘤分割的脑肿瘤分割,从2D Felcus图像中检测到糖尿病性视网膜病变。在每个任务中,我们都会评估数据效率,性能和收敛速度的收益。有趣的是,我们在通过我们的方法将学习的表示形式传输时,从大型未标记的3D语料库转移到小型下游特异性数据集时也发现了收益。我们以计算费用的一小部分与最先进的解决方案达到了竞争力。我们将开发算法(3D和2D版本)作为开源库发布我们的实现,以允许其他研究人员在其数据集上应用和扩展我们的方法。

Self-supervised learning methods have witnessed a recent surge of interest after proving successful in multiple application fields. In this work, we leverage these techniques, and we propose 3D versions for five different self-supervised methods, in the form of proxy tasks. Our methods facilitate neural network feature learning from unlabeled 3D images, aiming to reduce the required cost for expert annotation. The developed algorithms are 3D Contrastive Predictive Coding, 3D Rotation prediction, 3D Jigsaw puzzles, Relative 3D patch location, and 3D Exemplar networks. Our experiments show that pretraining models with our 3D tasks yields more powerful semantic representations, and enables solving downstream tasks more accurately and efficiently, compared to training the models from scratch and to pretraining them on 2D slices. We demonstrate the effectiveness of our methods on three downstream tasks from the medical imaging domain: i) Brain Tumor Segmentation from 3D MRI, ii) Pancreas Tumor Segmentation from 3D CT, and iii) Diabetic Retinopathy Detection from 2D Fundus images. In each task, we assess the gains in data-efficiency, performance, and speed of convergence. Interestingly, we also find gains when transferring the learned representations, by our methods, from a large unlabeled 3D corpus to a small downstream-specific dataset. We achieve results competitive to state-of-the-art solutions at a fraction of the computational expense. We publish our implementations for the developed algorithms (both 3D and 2D versions) as an open-source library, in an effort to allow other researchers to apply and extend our methods on their datasets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源