论文标题

用于探测视觉感知的纹理插值

Texture Interpolation for Probing Visual Perception

论文作者

Vacher, Jonathan, Davila, Aida, Kohn, Adam, Coen-Cagli, Ruben

论文摘要

纹理合成模型是理解视觉处理的重要工具。特别是,基于神经相关特征的统计方法在理解视觉感知和神经编码方面具有重要作用。新的基于深度学习的方法进一步提高了合成纹理的质量。然而,目前尚不清楚为什么深层质地合成性能如此出色,而这个新框架在探测视觉感知中的应用很少。在这里,我们表明,纹理的深卷卷神经网络(CNN)激活的分布通过椭圆分布很好地描述,因此,遵循最佳的传输理论,限制其平均值和协方差足以生成新的纹理样本。然后,我们提出了自然的大地测量学(即两个点之间的最短路径),并以最佳转运度量产生,以在任意纹理之间插值。与其他基于CNN的方法相比,我们的插值方法似乎更匹配纹理感知的几何形状,并且我们的数学框架更适合研究其统计性质。我们通过测量与人类观察者中插值参数相关的感知量表以及猕猴视觉皮层不同区域的神经敏感性来应用我们的方法。

Texture synthesis models are important tools for understanding visual processing. In particular, statistical approaches based on neurally relevant features have been instrumental in understanding aspects of visual perception and of neural coding. New deep learning-based approaches further improve the quality of synthetic textures. Yet, it is still unclear why deep texture synthesis performs so well, and applications of this new framework to probe visual perception are scarce. Here, we show that distributions of deep convolutional neural network (CNN) activations of a texture are well described by elliptical distributions and therefore, following optimal transport theory, constraining their mean and covariance is sufficient to generate new texture samples. Then, we propose the natural geodesics (ie the shortest path between two points) arising with the optimal transport metric to interpolate between arbitrary textures. Compared to other CNN-based approaches, our interpolation method appears to match more closely the geometry of texture perception, and our mathematical framework is better suited to study its statistical nature. We apply our method by measuring the perceptual scale associated to the interpolation parameter in human observers, and the neural sensitivity of different areas of visual cortex in macaque monkeys.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源