论文标题

在非晶格中滑行对称拓扑结晶绝缘子阶段

Glide-symmetric topological crystalline insulator phase in a nonprimitive lattice

论文作者

Kim, Heejae, Murakami, Shuichi

论文摘要

我们研究了由滑动对称性保护的拓扑结晶绝缘体相,其特征在于Z2拓扑数。在本文中,我们从原始晶格中得出了一个由非主体晶格中滑行对称性保护的Z2拓扑不变式的公式。我们通过将Brillouin区域折叠到原始晶格的晶格中,为9号空间群的Glide-Z2不变型公式与Glide-Z2不变的原始晶格的公式建立。该公式是根据K空间中浆果曲率和浆果阶段积分编写的。当添加反转对称性并将空间群变为15时,我们还得出了GLIDE-Z2不变的公式。这将公式减少到了fu-kane样公式中,以$ k $空间中的高对称点的不可约为表示表示。我们还通过层构造方法构建了这些拓扑不变的,结果完全与K-Space方法中的拓扑构建。

We study the topological crystalline insulator phase protected by the glide symmetry, which is characterized by the Z2 topological number. In the present paper, we derive a formula for the Z2 topological invariant protected by glide symmetry in a nonprimitive lattice, from that in a primitive lattice. We establish a formula for the glide-Z2 invariant for the space group No. 9 with glide symmetry in the base-centered lattice, by folding the Brillouin zone into that of the primitive lattice where the formula for the glide-Z2 invariant is known. The formula is written in terms of integrals of the Berry curvatures and Berry phases in the k-space. We also derive a formula of the glide-Z2 invariantwhen the inversion symmetry is added, and the space group becomes No. 15. This reduces the formula into the Fu-Kane-like formula, expressed in terms of the irreducible representations at high-symmetry points in $k$ space. We also construct these topological invariants by the layer-construction approach, and the results completely agree with those from the k-space approach.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源