论文标题
围绕移动身体的常规时间周期粘性流的存在,唯一性和渐近行为:旋转情况
Existence, Uniqueness and Asymptotic Behavior of Regular Time-Periodic Viscous Flow around a Moving Body: Rotational Case
论文作者
论文摘要
我们在刚性体外的Navier-Stokes问题($ \ Mathscr b $)中的常规时间周期解决方案的少量数据显示出存在和唯一性,这些问题是按照恒定方向的同一时期的时间 - 周期性翻译运动,$ \ bfe_1 $,并带有持续的angular angular angular angular angular angular angular angular velocular velocity $ $ \ bffe $ \ bffeo $ \ bffeome $ \ bffeome $ \ bffeome $ \ bffeome $ \ bffeome $ \ bffeome $。我们还研究了这种解决方案的空间渐近行为,尤其表明,如果$ \ mathscr b $具有净运动为特征,其特征是非零平均平均平均翻译速度$ \ bar {\ bfxi} $,则解决方案在方向上表现出类似唤醒$ - \ bfxi $ a Moby a Move a prospatie tofly Antim a Moby streate and the Anctere and senefore and的稳定行为。速度$ \ bar {\ bfxi} $和Angular Velocity $ \ bfomega $。
We show existence and uniqueness for small data of regular time-periodic solutions to the Navier-Stokes problem in the exterior of a rigid body, $\mathscr B$, that moves by time-periodic translational motion of the same period along a constant direction, $\bfe_1$, and spins with constant angular velocity $\bfomega$ parallel to $\bfe_1$. We also study the spatial asymptotic behavior of such solutions and show, in particular, that if $\mathscr B$ has a net motion characterized by a non-zero average translational velocity $\bar{\bfxi}$, then the solution exhibit a wake-like behavior in the direction $-\bar{\bfxi}$ entirely analogous to that of a steady-state flow around a body that moves with velocity $\bar{\bfxi}$ and angular velocity $\bfomega$.