论文标题

C型的C-Trees和连贯的表现,用于C型的多型

C-trees and a coherent presentation for the plactic monoid of type C

论文作者

Meha, Uran

论文摘要

在本文中,我们通过有限收敛呈现$ acol $ aCOL $,带有生成套装$ acol(c_n)$的$ contratigent $ c $ type $ c $的$ \ mathbb {n} - $装饰的$ c $ type $ c $的多理性胶片。通过Squier的连贯完成定理,通过识别产生汇合的家族,即产生$ 3- $单元,将此介绍扩展到连贯的演示文稿中。在这里,生成$ 3- $的单元是长度$ 3 $的关键分支。我们将晶体结构的概念调整为$ ACOL(C_N)^\ ast $,并证明$ 3- $单元的形状由Kashiwara操作员的作用保留。因此,我们将对连贯性呈现的研究减少到仅描述其源为最高词的生成$ 3- $单元。然后,我们介绍称为$ c- $树的组合对象,该对象在$ acol(c_n)^\ ast $中参数化最高权重的单词。 $ c- $树允许用Lecouvey介绍的类型$ c $中的插入算法来简化计算,我们证明,以$ acol $的形式生成$ 3- $的单元最多是$(4,3)$。结果,我们表明,正如Hage介绍的$ PL(C_N)$的列表示,最多生成了$ 3- $的形状单元格(4,3)$。这与$ a $ $ a $的情况进行了对比,其中$ pl(a_n)$的$ 3- $单元最多是$(3,3)$的形状。

In this article we introduce the $\mathbb{N}-$decorated plactic monoid of type $C$, denoted $Pl^\mathbb{N}(C_n)$, via a finite convergent presentation $ACol$, with generating set $ACol(C_n)$ consisting of admissible columns, and an element $ε$. By Squier's coherent completion theorem, this presentation is extended into a coherent presentation by identifying a family of generating confluences, i.e. generating $3-$cells. Here the generating $3-$cells are critical branchings on words of length $3$. We adapt the notions of crystal structure to $ACol(C_n)^\ast$ , and show that the shape of $3-$cells is preserved by the action of Kashiwara operators. Thus we reduce the study of the coherent presentation to only describing the generating $3-$cells whose source is a word of highest weight. We then introduce combinatorial objects called $C-$trees which parameterize the words of highest weight in $ACol(C_n)^\ast$. The $C-$trees allow for simplifying calculations with the insertion algorithm in type $C$, as introduced in by Lecouvey, and we prove that the generating $3-$cells in $ACol$ are of shape at most $(4,3)$. As a consequence, we show that the column presentation of $Pl(C_n)$, as introduced by Hage, has generating $3-$cells of shape at most $(4,3)$. This contrasts the situation in type $A$, where the $3-$cells in the column presentation of $Pl(A_n)$ are of shape at most $(3,3)$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源