论文标题

在两个黑洞度量标准中弯曲

Light bending in a two black hole metric

论文作者

Alawadi, M. Alrais, Batic, D., Nowakowski, M.

论文摘要

我们讨论了c-metric中的光的传播。我们发现无效的大地测量学仅用于某个轨道锥系列的圆形轨道。明确的分析公式是针对轨道半径和相应的开头固定锥体得出的。此外,我们证明了基于有效潜力的马鞍点的这些轨道是雅各比不稳定的。这完成了以前文献中进行的稳定性分析,并使我们能够探测两个黑洞度量标准的光弯曲。更确切地说,通过在纽曼 - 柔骨形式主义中构造合适的四分法,我们表明,这种几何形状中的光传播是无剪切的,无旋的,并且经过C-Black孔经过的光束会引起人们的注意。得出并讨论了压缩因子$θ$的精确分析公式。此外,当观察者和灯光均属于上述不变锥系列时,我们研究了弱和强的重力镜头。特别是,我们获得了允许计算弱和强重力透镜状态下的挠度角的公式。

We discuss the propagation of light in the C-metric. We discover that null geodesics admit circular orbits only for a certain family of orbital cones. Explicit analytic formulae are derived for the orbital radius and the corresponding opening angle fixing the cone. Furthermore, we prove that these orbits based on a saddle point in the effective potential are Jacobi unstable. This completes the stability analysis done in previous literature and allows us to probe into the light bending in a two black hole metric. More precisely, by constructing a suitable tetrad in the Newmann-Penrose formalism, we show that light propagation in this geometry is shear-free, irrotational, and a light beam passing by a C-black hole undergoes a focussing process. An exact analytic formula for the compression factor $θ$ is derived and discussed. Furthermore, we study the weak and strong gravitational lensing when both the observer and the light ray belong to the aforementioned family of invariant cones. In particular, we obtain formulae allowing to calculate the deflection angle in the weak and strong gravitational lensing regimes.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源