论文标题
从流动数据中提取公共交通的时空需求
Extracting Spatiotemporal Demand for Public Transit from Mobility Data
论文作者
论文摘要
随着人们不断迁移到不同的城市地区,我们的工作需求,服务和休闲的需求正在迅速转变。不断变化的城市人口统计学对过境服务的有效管理构成了一些挑战。为了预测过境需求,规划人员经常诉诸于难以获得,不准确或过时的社会学调查或建模。然后,我们如何估计对移动性的各种需求?我们提出了一种简单的方法,以确定城市中公共交通的时空需求。使用高斯混合模型,我们将经验的乘客数据分解为一组代表乘客量的时间需求概况。从大伦敦地区大约有460万个每日运输痕迹的案例显示出不同的需求概况。我们发现,这些配置文件的加权混合物可以很好地产生任何电台的交通,从而发现了空间同心的移动需求簇。我们分析城市时空地理的方法可以扩展到具有不同公共交通方式的其他城市地区。
With people constantly migrating to different urban areas, our mobility needs for work, services and leisure are transforming rapidly. The changing urban demographics pose several challenges for the efficient management of transit services. To forecast transit demand, planners often resort to sociological investigations or modelling that are either difficult to obtain, inaccurate or outdated. How can we then estimate the variegated demand for mobility? We propose a simple method to identify the spatiotemporal demand for public transit in a city. Using a Gaussian mixture model, we decompose empirical ridership data into a set of temporal demand profiles representative of ridership over any given day. A case of approximately 4.6 million daily transit traces from the Greater London region reveals distinct demand profiles. We find that a weighted mixture of these profiles can generate any station traffic remarkably well, uncovering spatially concentric clusters of mobility needs. Our method of analysing the spatiotemporal geography of a city can be extended to other urban regions with different modes of public transit.