论文标题
Majorana零模式及其玻体化
Majorana zero modes and their bosonization
论文作者
论文摘要
使用分析方法,对一维非相互作用超导对称性拓扑(SPT)相的最简单连续模型进行了详细研究。第一步,我们提出了Fermionic Bogoliubov-De Gennes Hamiltonian的完全精确对角线化,以实现有限的长度和开放边界的系统。特别是,我们得出了在拓扑非平凡阶段出现的Majorana零模式的精确分析表达式,揭示了它们的空间定位,对称操作下的转换特性以及相关的准排成地基地面状态的确切有限大小的能量分解。然后,我们继续通过开放和封闭的几何形状中的精确算子琼脂化分析模型。在封闭的电线几何形状中,我们证明了费米昂的奇偶校验从拓扑非平凡的阶段中的扭曲边界条件转变。另一方面,对于开放式电线,我们首先采用一种使用Mathieu方程的半经典方法来研究两个准排成地基态以及它们在有限系统尺寸下的能量分裂。然后,我们最终使用Vertex-algebra技术以玻感语言来得出Majorana零模式的确切形式。这些模式已被验证与从费米文化描述获得的结果完全一致。超导SPT阶段的费尔米金和骨气配方提供的互补观点得到了调和,从而使我们能够完整准确地说明MajoraNA零模式如何在SPT阶段的钾盐描述中表现出来。
The simplest continuum model of a one-dimensional non-interacting superconducting fermionic symmetry-protected topological (SPT) phase is studied in great detail using analytical methods. In a first step, we present a full exact diagonalization of the fermionic Bogoliubov-de Gennes Hamiltonian for a system of finite length and with open boundaries. In particular, we derive exact analytical expressions for the Majorana zero modes emerging in the topologically non-trivial phase, revealing their spatial localization, their transformation properties under symmetry operations, and the exact finite-size energy splitting of the associated quasi-degenerate ground states. We then proceed to analyze the model via exact operator bosonization in both open and closed geometries. In the closed wire geometry, we demonstrate fermion parity switching from twisting boundary conditions in the topologically non-trivial phase. For the open wire, on the other hand, we first take a semiclassical approach employing the Mathieu equation to study the two quasi-degenerate ground states as well as their energy splitting at finite system sizes. We then finally derive the exact forms of the Majorana zero modes in the bosonic language using vertex-algebra techniques. These modes are verified to be in exact agreement with the results obtained from the fermionic description. The complementary viewpoints provided by the fermionic and bosonic formulations of the superconducting SPT phase are reconciled, allowing us to provide a complete and exact account of how Majorana zero modes manifest in a bosonized description of an SPT phase.