论文标题
通过飞秒激光器驱动的发电机的磁场扩增到Gigagauss量表
Magnetic field amplification to the gigagauss scale via dynamos driven by femtosecond lasers
论文作者
论文摘要
到达Gigaguss磁场可在原子和等离子体物理学中打开新的视野。在这些磁场强度下,电子转基因能$ \hbarΩ_{c} $与原子结合能(Rydberg)相当,而回旋频率$ω_{C} $接近固态密度的等离子频率,从而显着改变了目标的光学特性。实验室中如此强大的准磁场的产生仍然是一个挑战。使用超级计算机模拟,我们证明了如何通过通过循环极化的相对论飞秒激光照射微通道目标来实现它。激光脉冲沿通道壁驱动强的电子涡流,通过反法拉迪效应诱导通道中的巨型纵向磁场。然后将该种子场放大到千兆级水平,并通过在通道壁上的等离子体热膨胀驱动的发电机以皮秒时间刻度保持。我们的计划为使用随时可用的激光器在实验室中生产长时间的极端磁场设定了一个可能的平台。该概念也可能与诸如磁惯性融合的应用有关。
Reaching gigagauss magnetic fields opens new horizons both in atomic and plasma physics. At these magnetic field strengths, the electron cyclotron energy $\hbarω_{c}$ becomes comparable to the atomic binding energy (the Rydberg), and the cyclotron frequency $ω_{c}$ approaches the plasma frequency at solid state densities that significantly modifies optical properties of the target. The generation of such strong quasistatic magnetic fields in laboratory remains a challenge. Using supercomputer simulations, we demonstrate how it can be achieved all-optically by irradiating a micro-channel target by a circularly polarized relativistic femtosecond laser. The laser pulse drives a strong electron vortex along the channel wall, inducing a megagauss longitudinal magnetic field in the channel by the inverse Faraday effect. This seed field is then amplified up to a gigagauss level and maintained on a picosecond time scale via dynamos driven by plasma thermal expansion off the channel walls. Our scheme sets a possible platform for producing long living extreme magnetic fields in laboratories using readily available lasers. The concept might also be relevant for applications such as magneto-inertial fusion.