论文标题
LI10GEP2S12型超电英导体的深度潜在生成方案和仿真方案
Deep Potential generation scheme and simulation protocol for the Li10GeP2S12-type superionic conductors
论文作者
论文摘要
由于其高计算成本,使用{\ it Ab intibal}分子动力学(AIMD)准确模拟电池材料中的锂离子扩散过程是一个挑战。由于基于机器学习的原子间潜力的进步,近年来这种情况发生了巨大变化。在这里,我们实施了深层电位生成器方案\ textIt {自动}为Ligeps-type固态电解质材料产生原子间电位。这增加了我们通过几个数量级模拟此类材料的能力,而无需牺牲{\ it i n od Itif}精度。仔细研究了重要的技术方面,例如统计误差和大小效应。我们通过研究重要的技术方面(例如统计误差和尺寸效应),进一步建立了可靠的协议,用于在实验条件下准确计算锂离子扩散过程。这样的协议和自动化工作流程使我们能够以大量改良的效率筛选其相关属性。通过使用此处开发的协议和自动化工作流,我们获得了与实验非常吻合的锂离子扩散能量的扩散率数据和激活能。我们的工作为未来研究锂离子扩散机制和优化固态电解质材料的锂离子电导率的优化铺平了道路。
It has been a challenge to accurately simulate Li-ion diffusion processes in battery materials at room temperature using {\it ab initio} molecular dynamics (AIMD) due to its high computational cost. This situation has changed drastically in recent years due to the advances in machine learning-based interatomic potentials. Here we implement the Deep Potential Generator scheme to \textit{automatically} generate interatomic potentials for LiGePS-type solid-state electrolyte materials. This increases our ability to simulate such materials by several orders of magnitude without sacrificing {\it ab initio} accuracy. Important technical aspects like the statistical error and size effects are carefully investigated. We further establish a reliable protocol for accurate computation of Li-ion diffusion processes at experimental conditions, by investigating important technical aspects like the statistical error and size effects. Such a protocol and the automated workflow allow us to screen materials for their relevant properties with much-improved efficiency. By using the protocol and automated workflow developed here, we obtain the diffusivity data and activation energies of Li-ion diffusion that agree well with the experiment. Our work paves the way for future investigation of Li-ion diffusion mechanisms and optimization of Li-ion conductivity of solid-state electrolyte materials.