论文标题

沿切向曲线的分数schrödinger方程的切角曲线收敛

Pointwise convergence along a tangential curve for the fractional Schrödinger equation

论文作者

Cho, Chu-hee, Shiraki, Shobu

论文摘要

在本文中,我们研究了一个空间维度的分数schrödinger方程的切向曲线的侧面收敛问题,并估算了差异集的电容尺寸。我们将Lee的先前论文和古典Schrödinger方程式的第一作者扩展到了,该论文本身包含了由于Lee,Vargas和第一作者而导致的结果,该结果是分数Schrödinger方程。该证明是基于没有时间定位的分解论点的,第二作者最近引入了该论点。

In this paper we study the pointwise convergence problem along a tangential curve for the fractional Schrödinger equations in one spatial dimension and estimate the capacitary dimension of the divergence set. We extend a prior paper by Lee and the first author for the classical Schrödinger equation, which in itself contains a result due to Lee, Vargas and the first author, to the fractional Schrödinger equation. The proof is based on a decomposition argument without time localization, which has recently been introduced by the second author.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源