论文标题

从固定时间序列推断的学习因子图

Learned Factor Graphs for Inference from Stationary Time Sequences

论文作者

Shlezinger, Nir, Farsad, Nariman, Eldar, Yonina C., Goldsmith, Andrea J.

论文摘要

传统上,从时间序列进行推断的方法的设计依赖于描述潜在期望序列与观察到的序列之间关系的统计模型。已经得出了一种基于模型的算法的广泛家族,用于使用代表基础分布的因子图进行递归计算,以在可控的复杂性下进行推理。一种替代模型 - 不合SNOSTIC方法利用机器学习(ML)方法。在这里,我们提出了一个框架,该框架结合了基于模型的算法和数据驱动的ML工具,用于固定时间序列。在提出的方法中,开发神经网络是为了单独学习一个因子图的特定组成部分,描述了时间顺序的分布,而不是完整的推理任务。通过利用此分布的固定特性,可以将结果方法应用于不同时间持续时间的序列。可以使用可使用小型训练集训练的紧凑神经网络来实现学习的因子图,或者可以用来改善现有的深度推理系统。我们提出了一种基于学到的固定因子图的推理算法,该算法学会从标记的数据实现总产品方案,并可以应用于不同长度的序列。我们的实验结果表明,所提出的学习因子图能够从小型训练集中进行准确的推断,以使用Sleep-ed-edf数据集进行睡眠阶段检测,以及与未知通道的数字通信中的符号检测。

The design of methods for inference from time sequences has traditionally relied on statistical models that describe the relation between a latent desired sequence and the observed one. A broad family of model-based algorithms have been derived to carry out inference at controllable complexity using recursive computations over the factor graph representing the underlying distribution. An alternative model-agnostic approach utilizes machine learning (ML) methods. Here we propose a framework that combines model-based algorithms and data-driven ML tools for stationary time sequences. In the proposed approach, neural networks are developed to separately learn specific components of a factor graph describing the distribution of the time sequence, rather than the complete inference task. By exploiting stationary properties of this distribution, the resulting approach can be applied to sequences of varying temporal duration. Learned factor graph can be realized using compact neural networks that are trainable using small training sets, or alternatively, be used to improve upon existing deep inference systems. We present an inference algorithm based on learned stationary factor graphs, which learns to implement the sum-product scheme from labeled data, and can be applied to sequences of different lengths. Our experimental results demonstrate the ability of the proposed learned factor graphs to learn to carry out accurate inference from small training sets for sleep stage detection using the Sleep-EDF dataset, as well as for symbol detection in digital communications with unknown channels.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源