论文标题

量子场理论中的主要特征值和分数$ p-q $ laplace操作员的积极解决方案

Principal eigenvalue and positive solutions for Fractional $P-Q$ Laplace operator in quantum field theory

论文作者

Nguyen, Thanh-Hieu, Vo, Hoang-Hung

论文摘要

本文介绍了由非均匀分数$ p \&q $ laplacian操作员带有不确定权重$$ \ left(-Δ_p\ oright)^αu + + weft( - \左|当$Ø= \ r^n $和$ b \ equiv0 $时,我们进一步表明,如果$ 1 <q <q <q <q <q^*_β= \ frac {nq} {nq} {n-qβ} $和$ 0 l^{\ left(\ frac {q_β^*} {s} \ right)'} \ left(\ r^n \ right)\ bigcap l^{\ infty} \ left(\ r^n \ right(\ r^n \ right),$ s $ s $ s $ s $ \ dfrac {p \ left(1-t \ right)} {s} = 1 $,对于某些$ t \ in \ left(0,\ sqrt {\ dfrac {\ dfrac {p-q} {p-q} {p}}} \ right)。$我们的方法在各种分析中强烈回答,在这种分析中,山上通过了山上的角色。这项研究的主要困难是如何建立Palais-Smale条件。特别是,由于缺乏空间紧凑性和嵌入$ w^{α,p} \ left(\ r^n \ right)\ hookrightArrow w^{β{β} \ left(\ r^n \ right)$,我们必须利用浓度 - 组合的p.l.狮子\ cite {pll}克服困难。

This article deals with the existence and non-existence of positive solutions for the eigenvalue problem driven by nonhomogeneous fractional $p\& q$ Laplacian operator with indefinite weights $$\left(-Δ_p\right)^αu + \left(-Δ_q\right)^βu \,= λ\left[a(x) \left|u\right|^{p-2}u + b(x) \left|u\right|^{q-2}u \right]\quad\quad\textrm{in $Ø$},$$ where $Ø$ is a smooth bounded domain in $\R^N$ extended by zero outside. When $Ø=\R^N$ and $b\equiv0$, we further show that there exists a continuous family of the eigenvalue if $1<q<p<q^*_β=\frac{Nq}{N-qβ}$ and $0\leq a\in L^{\left(\frac{q_β^*}{s}\right)'}\left(\R^N\right)\bigcap L^{\infty}\left(\R^N\right)$ with $s$ satisfies $\dfrac{p-t}{p_α^*}+ \dfrac{p\left(1-t\right)}{s} =1$, for some $t\in \left(0, \sqrt{\dfrac{p-q}{p}}\right).$ Our approach replies strongly on variational analysis, in which the Mountain pass theorem plays the key role. The main difficulty in this study is that how to establish the Palais-Smale conditions. In particular, in $\R^N$, due to the lack of spatial compactness and the embedding $W^{α, p}\left(\R^N\right) \hookrightarrow W^{β, q}\left(\R^N\right)$, we must employ the concentration-compactness principle of P.L. Lions \cite{PLL} to overcome the difficulty.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源