论文标题
Symplectic Kloosterman Sums andPoincaré系列
Symplectic Kloosterman Sums and Poincaré Series
论文作者
论文摘要
我们证明了kloosterman将军的节能范围,以$ \ operatatorName {sp}(4)$与所有Weyl元素相关联的分层参数,加上$ p $ -ADIC ADIC SENTARY阶段方法。我们将这些Kloosterman总和与$ \ operatotorname {sp}(4)$Poincaré系列的傅立叶系数联系起来。
We prove power-saving bounds for general Kloosterman sums on $\operatorname{Sp}(4)$ associated to all Weyl elements via a stratification argument coupled with $p$-adic stationary phase methods. We relate these Kloosterman sums to the Fourier coefficients of $\operatorname{Sp}(4)$ Poincaré series.