论文标题
复杂性和动力
Complexity and Momentum
论文作者
论文摘要
先前的工作探索了在JT Gravity和Syk模型的背景下,三个概念 - 操作员大小,复杂性和散装径向动量之间的连接。在本文中,我们研究了这些连接的较高维度概括。我们使用玩具模型在扰动CFT的真空时研究操作员的生长。从电路分析中,我们将操作员的增长与复杂性的增加相关联,并通过复杂性 - 体积二元性对其进行检查。我们进一步提供了一个经验公式,该公式与复杂性和散装径向动量,从扰动从截止边界出现到扰动时间之后。
Previous work has explored the connections between three concepts -- operator size, complexity, and the bulk radial momentum of an infalling object -- in the context of JT gravity and the SYK model. In this paper we investigate the higher dimensional generalizations of these connections. We use a toy model to study the growth of an operator when perturbing the vacuum of a CFT. From circuit analysis we relate the operator growth to the rate of increase of complexity and check it by complexity-volume duality. We further give an empirical formula relating complexity and the bulk radial momentum that works from the time that the perturbation just comes in from the cutoff boundary, to after the scrambling time.