论文标题

在Iwahori-Hecke代数的派生类别上

On the derived category of the Iwahori-Hecke algebra

论文作者

Hellmann, Eugen

论文摘要

我们陈述了一个猜想,该猜想将P-Adic拆分还原组的平滑表示的派生类别与L-Parameters堆栈上的(Quasi)相干滑轮的派生类别相关联。我们通过证明函数应由派生的张量产物给出,并通过插入Langlands对应的代表家族来调查GL_N的主要块中的猜想。

We state a conjecture that relates the derived category of smooth representations of a p-adic split reductive group with the derived category of (quasi-)coherent sheaves on a stack of L-parameters. We investigate the conjecture in the case of the principal block of GL_n by showing that the functor should be given by the derived tensor product with the family of representations interpolating the modified Langlands correspondence over the stack of L-parameters that is suggested by the work of Helm and Emerton-Helm.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源