论文标题
在Iwahori-Hecke代数的派生类别上
On the derived category of the Iwahori-Hecke algebra
论文作者
论文摘要
我们陈述了一个猜想,该猜想将P-Adic拆分还原组的平滑表示的派生类别与L-Parameters堆栈上的(Quasi)相干滑轮的派生类别相关联。我们通过证明函数应由派生的张量产物给出,并通过插入Langlands对应的代表家族来调查GL_N的主要块中的猜想。
We state a conjecture that relates the derived category of smooth representations of a p-adic split reductive group with the derived category of (quasi-)coherent sheaves on a stack of L-parameters. We investigate the conjecture in the case of the principal block of GL_n by showing that the functor should be given by the derived tensor product with the family of representations interpolating the modified Langlands correspondence over the stack of L-parameters that is suggested by the work of Helm and Emerton-Helm.