论文标题
临界条中希尔伯特模块化形式的L功能的衍生物的无散制
Non-Vanishing of Derivatives of L-Functions of Hilbert Modular Forms in The Critical Strip
论文作者
论文摘要
在本文中,我们表明,平均而言,Cuspidal Hilbert模块化表格的$ L $ runctions的衍生物具有足够大的重量$ k $在行段上不会消失$ \ im \ im(s)= t_ {0} $, $ \ re(s)\ in(\ frac {k-1} {2},\ frac {k} {2}-ε)\ cup(\ frac {k} {2} {2}+ε,\ frac {k+1} {2} {2} {2} {2})$。这类似于经典模块化形式的情况。
In this paper, we show that, on average, the derivatives of $L$-functions of cuspidal Hilbert modular forms with sufficiently large weight $k$ do not vanish on the line segments $\Im(s)=t_{0}$, $\Re(s)\in(\frac{k-1}{2},\frac{k}{2}-ε)\cup(\frac{k}{2}+ε,\frac{k+1}{2})$. This is analogous to the case of classical modular forms.