论文标题
局部和统治半群
Locality and Domination of Semigroups
论文作者
论文摘要
我们表征所有$ l^2(ω)上的所有semigroups $(t(t))_ {t \ geq0} $,夹在dirichlet和neumann之间,即: e^{tδ_d} \ leq t(t)\ leq e^{tδ_n} \ quad,\ text {for All} T \ geq0 \ geq0 \ end end {equation {equation {equation {equation*}在正算子方面。证明使用众所周知的beurling-deny和lejan公式删除通常在与$(t(t))_ {t \ geq 0} $相关的表单上制定的局部假设。
We characterize all semigroups $(T(t))_{t\geq0}$ on $L^2(Ω)$ sandwiched between Dirichlet and Neumann ones, i.e.: \begin{equation*}\label{eq:san} e^{tΔ_D}\leq T(t)\leq e^{tΔ_N}\quad,\text{for all }t\geq0 \end{equation*} in the positive operators sense. The proof uses the well-known Beurling-Deny and Lejan formula to drop the locality assumption made usually on the form associated with $(T(t))_{t\geq 0}$.