论文标题
一些始终产生的群体的例子
Some examples of invariably generated groups
论文作者
论文摘要
如果有一个子集$ s \ subseteq g $,则$ g $始终生成(IG),以便每个子集$ s'\ subseteq g $,从$ s $中获得的每个元素,用$ s $ s'$ s'$ generates $ g $获得。 $ g $始终是有限生成的(无花果),如果还可以选择这样的子集$ s $作为有限的话。 在本说明中,我们构建了一个无花果组$ g $,带有索引$ 2 $子组$ n \ lhd g $,因此$ n $不是IG。这表明,在传递到有限索引的子组的子组中,财产IG和无花果都不是稳定的,回答了Wiegold和Kantor,Lubotzky,Shalev。我们还制作了有限生成的IG基团的第一个例子,这些IG组不是无花果的,回答了Cox的问题。
A group $G$ is invariably generated (IG) if there is a subset $S \subseteq G$ such that for every subset $S' \subseteq G$, obtained from $S$ by replacing each element with a conjugate, $S'$ generates $G$. $G$ is finitely invariably generated (FIG) if, in addition, one can choose such a subset $S$ to be finite. In this note we construct a FIG group $G$ with an index $2$ subgroup $N \lhd G$ such that $N$ is not IG. This shows that neither property IG nor FIG is stable under passing to subgroups of finite index, answering questions of Wiegold and Kantor, Lubotzky, Shalev. We also produce the first examples of finitely generated IG groups that are not FIG, answering a question of Cox.