论文标题

MFPP:黑盒模型解释的形态碎片扰动金字塔

MFPP: Morphological Fragmental Perturbation Pyramid for Black-Box Model Explanations

论文作者

Yang, Qing, Zhu, Xia, Fwu, Jong-Kae, Ye, Yun, You, Ganmei, Zhu, Yuan

论文摘要

最近,深层神经网络(DNN)已被应用于许多高级和多样化的任务,例如医疗诊断,自动驾驶等。由于深层模型的透明性缺乏,DNN经常因人类无法解释的预测而受到批评。在本文中,我们提出了一种新型的形态学碎片扰动金字塔(MFPP)方法来解决可解释的AI问题。特别是,我们专注于黑框方案,该方案可以识别负责DNN输出的输入区域,而不必了解DNN的内部体系结构。在MFPP方法中,我们将输入图像分为多尺度片段,然后随机掩盖片段作为扰动以生成显着图,这表明每个像素对黑匣子模型的预测结果的重要性。与现有的输入采样扰动方法相比,金字塔结构片段已被证明更有效。它可以更好地探索输入图像的形态信息以匹配其语义信息,并且不需要DNN内部任何值。我们在定性和定量上证明MFPP符合多个DNN模型和数据集上最先进(SOTA)黑盒解释方法的性能。

Deep neural networks (DNNs) have recently been applied and used in many advanced and diverse tasks, such as medical diagnosis, automatic driving, etc. Due to the lack of transparency of the deep models, DNNs are often criticized for their prediction that cannot be explainable by human. In this paper, we propose a novel Morphological Fragmental Perturbation Pyramid (MFPP) method to solve the Explainable AI problem. In particular, we focus on the black-box scheme, which can identify the input area that is responsible for the output of the DNN without having to understand the internal architecture of the DNN. In the MFPP method, we divide the input image into multi-scale fragments and randomly mask out fragments as perturbation to generate a saliency map, which indicates the significance of each pixel for the prediction result of the black box model. Compared with the existing input sampling perturbation method, the pyramid structure fragment has proved to be more effective. It can better explore the morphological information of the input image to match its semantic information, and does not need any value inside the DNN. We qualitatively and quantitatively prove that MFPP meets and exceeds the performance of state-of-the-art (SOTA) black-box interpretation method on multiple DNN models and datasets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源