论文标题

彩色数字三的Gallai-Ramsey编号

Gallai-Ramsey numbers for graphs with chromatic number three

论文作者

Zhao, Qinghong, Wei, Bing

论文摘要

给定图形$ h $和一个整数$ k \ ge1 $,Gallai-ramsey编号$ gr_k(h)$被定义为最小整数$ n $,因此每个$ k $ - 完整的图形$ k_n $的每个$ k $ - 包含rainbow(所有不同的彩色)triangle或单块triangle或$ h $ $ h $ $ h $。在本文中,我们研究了具有色度三个的图形的Gallai-ramsey数字,例如$ \ wideHat {k} _m $ for $ m \ ge2 $,其中$ \ widehat {k} _m $是$ m+m+m+m+m+1 $的kipas,从$ k_1 $&k_1 $和$ p_m $的dertice和a Grapher comphertice获得的$ m+1 $ covertice,以及$ k_1 $和$ p_m $ $ p_m $ and a n eftertice and devertice and a Grapher and a Grapher and and aGrap所$ \ mathscr {h} $。我们首先研究了此类图的一般下限,并提出了$ gr_k(\ wideHat {k} _m)$的确切值的猜想。然后,我们给出一个统一的证明,以确定$ \ mathscr {h} $中许多图的Gallai-ramsey编号,并获得$ gr_k(\ wideHat {k} _4)$的确切值,$ k \ ge1 $。我们的结果不仅表明$ gr_k(\ wideHat {k} _m)$的猜想对于$ m \ le4 $是正确的,而且暗示着$ gr_k(h)$的几个结果,对于一些$ h \ in \ mathscr {h} $,这些结果在不同论文中是单独证明的。

Given a graph $H$ and an integer $k\ge1$, the Gallai-Ramsey number $GR_k(H)$ is defined to be the minimum integer $n$ such that every $k$-edge coloring of the complete graph $K_n$ contains either a rainbow (all different colored) triangle or a monochromatic copy of $H$. In this paper, we study Gallai-Ramsey numbers for graphs with chromatic number three such as $\widehat{K}_m$ for $m\ge2$, where $\widehat{K}_m$ is a kipas with $m+1$ vertices obtained from the join of $K_1$ and $P_m$, and a class of graphs with five vertices, denoted by $\mathscr{H}$. We first study the general lower bound of such graphs and propose a conjecture for the exact value of $GR_k(\widehat{K}_m)$. Then we give a unified proof to determine the Gallai-Ramsey numbers for many graphs in $\mathscr{H}$ and obtain the exact value of $GR_k(\widehat{K}_4)$ for $k\ge1$. Our outcomes not only indicate that the conjecture on $GR_k(\widehat{K}_m)$ is true for $m\le4$, but also imply several results on $GR_k(H)$ for some $H\in \mathscr{H}$ which are proved individually in different papers.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源