论文标题

在量子类型$ c $中的网络上

On webs in quantum type $C$

论文作者

Rose, David E. V., Tatham, Logan

论文摘要

我们研究量子类型$ c $的网,重点介绍了第三个案例。我们通过生成器和关系来定义一个线性关键类别$ \ mathbf {web}(\ mathfrak {sp} _6)$ diagrammatication,并猜想它等于$ \ m m m m m mathbf {funderrep}(funderrep}(u_q(sp))由基本表示形式生成,用于参数$ q $的通用值。我们证明了许多结果支持此猜想,最值得注意的是,有一个完整的,本质上是滤波的函数$ \ Mathbf {web}(\ Mathfrak {\ Mathfrak {sp} _6)\ rightarrow \ rightArrow \ Mathbf {fundRep} $ \ mathbf {web}(\ mathfrak {sp} _6)$是有限维度的,并且在$ \ mathbf {web}(\ mathfrak {sp} _6)$ $ 1 $ dimensional中,单型单位的内态代数为$ \ mathfrak {\ mathfrak {sp} _6 _6)。后者对应于可以使用本地关系将所有封闭网络评估为标量的陈述。因此,我们获得了一种新的方法,用于量子$ \ mathfrak {sp} _6 $链接不变,类似于琼斯多项式的Kauffman支架描述。

We study webs in quantum type $C$, focusing on the rank three case. We define a linear pivotal category $\mathbf{Web}(\mathfrak{sp}_6)$ diagrammatically by generators and relations, and conjecture that it is equivalent to the category $\mathbf{FundRep}(U_q(\mathfrak{sp}_6))$ of quantum $\mathfrak{sp}_6$ representations generated by the fundamental representations, for generic values of the parameter $q$. We prove a number of results in support of this conjecture, most notably that there is a full, essentially surjective functor $\mathbf{Web}(\mathfrak{sp}_6) \rightarrow \mathbf{FundRep}(U_q(\mathfrak{sp}_6))$, that all $\mathrm{Hom}$-spaces in $\mathbf{Web}(\mathfrak{sp}_6)$ are finite-dimensional, and that the endomorphism algebra of the monoidal unit in $\mathbf{Web}(\mathfrak{sp}_6)$ is $1$-dimensional. The latter corresponds to the statement that all closed webs can be evaluated to scalars using local relations; as such, we obtain a new approach to the quantum $\mathfrak{sp}_6$ link invariants, akin to the Kauffman bracket description of the Jones polynomial.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源