论文标题
无监督学习和张量网络的量子过程断层扫描
Quantum process tomography with unsupervised learning and tensor networks
论文作者
论文摘要
量子技术进步的令人印象深刻的速度要求对量子硬件的表征和验证进行强大而可扩展的技术。量子过程断层扫描是从测量数据中重建未知量子通道的重建,仍然是完全表征量子设备的典型原始。但是,由于所需数据和经典后处理的指数缩放,其适用性范围通常仅限于一四分之一的门。在这里,我们提出了一种用于执行量子过程断层扫描的新技术,该技术通过将通道的张量网络表示与受无监督的机器学习启发的数据驱动优化结合来解决这些问题。我们通过合成生成的数据来证明我们的技术,用于理想的一维随机量子电路,最多为10 QUBITS,以及一个嘈杂的5克电路,仅使用一组有限的单一电位测量样品和输入状态,仅使用有限的单一电位测量样品和一个噪声的5克电路。我们的结果远远超出了最先进的功能,为在当前和近期量子计算机中基准测试量子电路提供了一种实用且及时的工具。
The impressive pace of advance of quantum technology calls for robust and scalable techniques for the characterization and validation of quantum hardware. Quantum process tomography, the reconstruction of an unknown quantum channel from measurement data, remains the quintessential primitive to completely characterize quantum devices. However, due to the exponential scaling of the required data and classical post-processing, its range of applicability is typically restricted to one- and two-qubit gates. Here, we present a new technique for performing quantum process tomography that addresses these issues by combining a tensor network representation of the channel with a data-driven optimization inspired by unsupervised machine learning. We demonstrate our technique through synthetically generated data for ideal one- and two-dimensional random quantum circuits of up to 10 qubits, and a noisy 5-qubit circuit, reaching process fidelities above 0.99 using only a limited set of single-qubit measurement samples and input states. Our results go far beyond state-of-the-art, providing a practical and timely tool for benchmarking quantum circuits in current and near-term quantum computers.