论文标题

量子神经网络的概括研究

Generalization Study of Quantum Neural Network

论文作者

Jiang, JinZhe, Zhang, Xin, Li, Chen, Zhao, YaQian, Li, RenGang

论文摘要

概括是神经网络的重要特征,并且已经进行了许多研究。最近,随着量子组合的发展,它带来了新的机会。在本文中,我们研究了由量子门构建的一类量子神经网络。在此模型中,我们首先将特征数据映射到希尔伯特空间中的量子状态,然后在其上实现单一进化,最后,我们可以通过对量子状态的进程测量来获得分类结果。由于Quan-Tum神经网络中的所有操作都是统一的,因此该参数构成了Hilbert Space的高度。与传统的神经网络相比,参数空间是平坦的。因此,落入局部最优并不容易,这意味着量子神经网络具有更好的概括。为了验证我们的建议,我们在三个公共数据集上评估了我们的模型,结果表明,与具有相同结构的经典NEU-ral网络相比,我们的模型具有更好的概括。

Generalization is an important feature of neural network, and there have been many studies on it. Recently, with the development of quantum compu-ting, it brings new opportunities. In this paper, we studied a class of quantum neural network constructed by quantum gate. In this model, we mapped the feature data to a quantum state in Hilbert space firstly, and then implement unitary evolution on it, in the end, we can get the classification result by im-plement measurement on the quantum state. Since all the operations in quan-tum neural networks are unitary, the parameters constitute a hypersphere of Hilbert space. Compared with traditional neural network, the parameter space is flatter. Therefore, it is not easy to fall into local optimum, which means the quantum neural networks have better generalization. In order to validate our proposal, we evaluated our model on three public datasets, the results demonstrated that our model has better generalization than the classical neu-ral network with the same structure.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源