论文标题
在TCS $ G_2 $歧管和4D紧急弦上
On TCS $G_2$ manifolds and 4D Emergent Strings
论文作者
论文摘要
在本说明中,我们研究了M理论的TCS $ G_2 $歧管压缩中的Swampland距离猜想。特别是,我们有兴趣测试精制版本 - 在具有4D $ n = 1 $ supersymmetry的设置中,新兴的字符串猜想。我们发现,一个弱耦合,无张力的基本异质弦确实以无限距离限制出现,其特征是在TCS $ G_2 $歧管中缩小了$ k3 $ fibre。这种基本的无张力弦导致了渐近无质量状态的参数领先的无限塔,这与新兴的弦构想一致。但是,无张力的字符串接收量子校正。我们检查这些量子校正是否确实通过弦二重性改变了缩小K3纤维的体积,因此使弦在量子级别恢复了不变的张力,从而导致分解。从几何上讲,量子校正修改了经典模量空间的度量,并有望阻止无限距离极限。我们还评论了TCS $ G_2 $压缩中另一种可能的无限距离限制,这可能会导致弱耦合的II型弦乐理论。
In this note, we study the Swampland Distance Conjecture in TCS $G_2$ manifold compactifications of M-theory. In particular, we are interested in testing a refined version -- the Emergent String Conjecture, in settings with 4d $N=1$ supersymmetry. We find that a weakly coupled, tensionless fundamental heterotic string does emerge at the infinite distance limit characterized by shrinking the $K3$-fibre in a TCS $G_2$ manifold. Such a fundamental tensionless string leads to the parametrically leading infinite tower of asymptotically massless states, which is in line with the Emergent String Conjecture. The tensionless string, however, receives quantum corrections. We check that these quantum corrections do modify the volume of the shrinking K3-fibre via string duality and hence make the string regain a non-vanishing tension at the quantum level, leading to a decompactification. Geometrically, the quantum corrections modify the metric of the classical moduli space and are expected to obstruct the infinite distance limit. We also comment on another possible type of infinite distance limit in TCS $G_2$ compactifications, which might lead to a weakly coupled fundamental type II string theory.