论文标题

在无滑动边界条件下缩放的Navier-Stokes方程原始方程的静静力近似

The Hydrostatic Approximation for the Primitive Equations by the Scaled Navier-Stokes Equations under the No-Slip Boundary Condition

论文作者

Furukawa, Ken, Giga, Yoshikazu, Kashiwabara, Takahito

论文摘要

在本文中,我们证明原始方程在最大$ l^p $ - $ l^p $ - $ l^q $ - 在三维层域$ω= \ torus^2 \ torus^2 \ torus^2 \ terus^2 \ times(-1,1)$在任何时间间隔$(0,t)$ for $ t for $ t for $ t for $ t for $ t for $ t for $ t for $ t for $ t for $ t for $ t for $ t> 0 $ t for No-S-SLIP(Dirichlet)边界条件下。我们表明,使用BESOV的最初数据$ u_0 \ in B^{s} _ {q,p}(ω)$ in b^{s> 2-2-2/ p + 1/ q $在$ s> 2-2/ p)中收敛到$ s> 2-2/ p +的方法,并在$ s> 2-2/ p + \ s> p + s}中收敛到$ s> 2-2/ p + 1/ q, ((ω))\ cap l^p(0,t; w^{2,q}(ω))$,带$ o(ε)$其中$(p,q)\ in(1,\ infty)^2 $满足$ \ frac {1} {p} {p} {p} {p} \ leq \ leq \ leq \ sin \ bracket \ bracket {1-1-1-1-1-2-2-2-2-2-2-/q/q/q/q/q/q/q/q/q/q/q/q/q/q/q/q/q/q/q。 $ \ mathbb {e} _1(t)$中缩放的Navier-Stokes方程的全局良好性也被证明是足够小的$ε> 0 $。请注意,包括$ t = \ infty $。

In this paper we justify the hydrostatic approximation of the primitive equations in the maximal $L^p$-$L^q$-setting in the three-dimensional layer domain $Ω= \Torus^2 \times (-1, 1)$ under the no-slip (Dirichlet) boundary condition in any time interval $(0, T)$ for $T>0$. We show that the solution to the scaled Navier-Stokes equations with Besov initial data $u_0 \in B^{s}_{q,p}(Ω)$ for $s > 2 - 2/p + 1/ q$ converges to the solution to the primitive equations with the same initial data in $\mathbb{E}_1 (T) = W^{1, p}(0, T ; L^q (Ω)) \cap L^p(0, T ; W^{2, q} (Ω)) $ with order $O(ε)$ where $(p,q) \in (1,\infty)^2$ satisfies $ \frac{1}{p} \leq \min \bracket{ 1 - 1/q, 3/2 - 2/q }$. The global well-posedness of the scaled Navier-Stokes equations in $\mathbb{E}_1 (T)$ is also proved for sufficiently small $ε>0$. Note that $T = \infty$ is included.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源