论文标题
深层降级神经网络辅助抗压渠道估计MMWave智能反射表面
Deep Denoising Neural Network Assisted Compressive Channel Estimation for mmWave Intelligent Reflecting Surfaces
论文作者
论文摘要
将大型智能反射表面(IRS)整合到毫米波(mmwave)大量多输入 - 莫尔特 - 欧普特(MIMO)已成为改善覆盖范围和吞吐量的一种有希望的方法。大多数现有的工作都假定理想的渠道估计,由于高维级联的MIMO频道和被动反射元素,这可能是具有挑战性的。因此,本文提出了对MMWave IRS系统的深度降级神经网络辅助压缩渠道估计,以减少训练开销。具体来说,我们首先引入了混合/活动性IRS体系结构,在该体系结构中,很少有人使用接收链来估算上行链路用户对IRS频道。在频道训练阶段,只有一小部分要素会被连续激活以发出部分通道。此外,可以根据压缩感测的有限测量重建完整的通道矩阵,从而利用了不同子载体之间的角域MMMWAVE MIMO通道的共同稀疏性,以提高精度。此外,进一步提出了一个复杂的降低降级卷积神经网络(CV-DNCNN),以提高性能。仿真结果证明了所提出的溶液优于最先进的解决方案。
Integrating large intelligent reflecting surfaces (IRS) into millimeter-wave (mmWave) massive multi-input-multi-ouput (MIMO) has been a promising approach for improved coverage and throughput. Most existing work assumes the ideal channel estimation, which can be challenging due to the high-dimensional cascaded MIMO channels and passive reflecting elements. Therefore, this paper proposes a deep denoising neural network assisted compressive channel estimation for mmWave IRS systems to reduce the training overhead. Specifically, we first introduce a hybrid passive/active IRS architecture, where very few receive chains are employed to estimate the uplink user-to-IRS channels. At the channel training stage, only a small proportion of elements will be successively activated to sound the partial channels. Moreover, the complete channel matrix can be reconstructed from the limited measurements based on compressive sensing, whereby the common sparsity of angular domain mmWave MIMO channels among different subcarriers is leveraged for improved accuracy. Besides, a complex-valued denoising convolution neural network (CV-DnCNN) is further proposed for enhanced performance. Simulation results demonstrate the superiority of the proposed solution over state-of-the-art solutions.