论文标题

拓扑网络的椭圆曲线的经过身份验证的关键方案

An Authenticated Key Scheme over Elliptic Curves for Topological Networks

论文作者

Aragona, Riccardo, Civino, Roberto, Gavioli, Norberto, Pugliese, Marco

论文摘要

传感器网络的节点可能是资源约束的设备,通常具有有限的寿命,从而使传感器网络变得非常动态的环境。在更新进入网络的新节点的秘密参数代替拆卸传感器的新节点的秘密参数时,管理此类设置的加密协议可能需要不成比例的努力。因此,用于传感器网络方案的设计师始终关注需要可扩展和适应性解决方案。在这项工作中,我们提出了一种新型的基于椭圆形的解决方案,该解决方案源自先前发布的密码协议TAKS,该解决方案解决了这个问题。我们对该方案进行了正式描述,该方案构建在主要字段和椭圆曲线上的二维矢量空间上,在椭圆形曲线上,节点拓扑比节点身份更相关,从而使网络的动态处理并降低了网络更新的成本。我们还研究了一些安全问题及其与椭圆曲线相关离散对数问题的关系。

Nodes of sensor networks may be resource-constrained devices, often having a limited lifetime, making sensor networks remarkably dynamic environments. Managing a cryptographic protocol on such setups may require a disproportionate effort when it comes to update the secret parameters of new nodes that enter the network in place of dismantled sensors. For this reason, the designers of schemes for sensor network are always concerned with the need of scalable and adaptable solutions. In this work, we present a novel elliptic-curve based solution, derived from the previously released cryptographic protocol TAKS, which addresses this issue. We give a formal description of the scheme, built on a two-dimensional vector space over a prime field and over elliptic curves, where node topology is more relevant than node identity, allowing a dynamic handling of the network and reducing the cost of network updates. We also study some security concerns and their relation to the related discrete logarithm problem over elliptic curves.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源