论文标题

在非交通概率的组合代数

Combinatorial Hopf algebras in noncommutative probabilility

论文作者

Lehner, Franz, Novelli, Jean-Christophe, Thibon, Jean-Yves

论文摘要

我们证明,在[Arxiv:1711.00219]中引入的广泛的瞬间肿瘤关系是由Eulerian Idempotents对所罗门山脉代数的作用给出的,所罗门山脉代数的直接总和构建了单词quasi-Metressimmetric-Metressric-Metressric函数的Hopf代数$ \ wqsym $。我们证明了这些身份的$ t $ - 动物(其中$ t $的系数还给原始版本),以及戈德堡的$ t $ analogue for hausdorff系列的系数。这相当于确定所有欧拉群在指数级产品上的作用。

We prove that the generalized moment-cumulant relations introduced in [arXiv:1711.00219] are given by the action of the Eulerian idempotents on the Solomon-Tits algebras, whose direct sum builds up the Hopf algebra of Word Quasi-Symmetric Functions $\WQSym$. We prove $t$-analogues of these identities (in which the coefficient of $t$ gives back the original version), and a similar $t$-analogue of Goldberg's formula for the coefficients of the Hausdorff series. This amounts to the determination of the action of all the Eulerian idempotents on a product of exponentials.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源