论文标题

用于跨平台锚链接链接预测的多级图形卷积网络

Multi-level Graph Convolutional Networks for Cross-platform Anchor Link Prediction

论文作者

Chen, Hongxu, Yin, Hongzhi, Sun, Xiangguo, Chen, Tong, Gabrys, Bogdan, Musial, Katarzyna

论文摘要

跨平台帐户匹配在社交网络分析中起着重要作用,并且对广泛的应用程序有益。但是,现有方法在很大程度上依赖于高质量的用户生成的内容(包括用户配置文件),或者只有关注网络拓扑而遭受数据不足问题,这将研究人员陷入了模型选择的不可解决的困境。在本文中,为了解决这个问题,我们提出了一个新颖的框架,该框架以统一的方式考虑了本地网络结构和超图结构的多级图。所提出的方法克服了现有工作的数据不足问题,不一定依靠用户人口统计信息。此外,为了调整所提出的方法能够处理大规模的社交网络,我们提出了一种两阶段的空间对帐机制,以使两个基于网络分区的基于网络分区的嵌入空间对齐基于网络的平行培训和跨不同社交网络的帐户匹配。已经在两个大型现实生活中的社交网络上进行了广泛的实验。实验结果表明,所提出的方法的表现优于最先进的模型。

Cross-platform account matching plays a significant role in social network analytics, and is beneficial for a wide range of applications. However, existing methods either heavily rely on high-quality user generated content (including user profiles) or suffer from data insufficiency problem if only focusing on network topology, which brings researchers into an insoluble dilemma of model selection. In this paper, to address this problem, we propose a novel framework that considers multi-level graph convolutions on both local network structure and hypergraph structure in a unified manner. The proposed method overcomes data insufficiency problem of existing work and does not necessarily rely on user demographic information. Moreover, to adapt the proposed method to be capable of handling large-scale social networks, we propose a two-phase space reconciliation mechanism to align the embedding spaces in both network partitioning based parallel training and account matching across different social networks. Extensive experiments have been conducted on two large-scale real-life social networks. The experimental results demonstrate that the proposed method outperforms the state-of-the-art models with a big margin.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源