论文标题
EAR2FACE:深生物识别模态映射
Ear2Face: Deep Biometric Modality Mapping
论文作者
论文摘要
在本文中,我们探讨了不同视觉生物识别方式之间的相关性。为此,我们提出了一个端到端的深神经网络模型,该模型了解生物识别方式之间的映射。也就是说,我们的目标是鉴于他/她的耳朵形象作为输入,产生主题的正面图像。我们将问题提出为配对的图像到图像翻译任务,并收集了来自多PIE和FERET数据集的耳朵和面部图像对数据集,以训练我们的基于GAN的模型。除了对抗和像素损失外,我们还采用了功能重建和样式重建损失。我们从重建质量和人识别准确性方面评估了提出的方法。为了评估学习映射模型的概括能力,我们还运行了跨数据集实验。也就是说,我们在FERET数据集上训练了模型,并在多PIE数据集上对其进行了测试,反之亦然。我们已经取得了非常有希望的结果,尤其是在FERET数据集上,从耳朵图像输入中产生了视觉吸引人的面部图像。此外,我们达到了非常高的跨模式识别性能,例如,在FERET数据集上达到了90.9%的排名10识别精度。
In this paper, we explore the correlation between different visual biometric modalities. For this purpose, we present an end-to-end deep neural network model that learns a mapping between the biometric modalities. Namely, our goal is to generate a frontal face image of a subject given his/her ear image as the input. We formulated the problem as a paired image-to-image translation task and collected datasets of ear and face image pairs from the Multi-PIE and FERET datasets to train our GAN-based models. We employed feature reconstruction and style reconstruction losses in addition to adversarial and pixel losses. We evaluated the proposed method both in terms of reconstruction quality and in terms of person identification accuracy. To assess the generalization capability of the learned mapping models, we also run cross-dataset experiments. That is, we trained the model on the FERET dataset and tested it on the Multi-PIE dataset and vice versa. We have achieved very promising results, especially on the FERET dataset, generating visually appealing face images from ear image inputs. Moreover, we attained a very high cross-modality person identification performance, for example, reaching 90.9% Rank-10 identification accuracy on the FERET dataset.