论文标题

护士比外科医生更接近女人?在单词嵌入中缓解性别偏见

Nurse is Closer to Woman than Surgeon? Mitigating Gender-Biased Proximities in Word Embeddings

论文作者

Kumar, Vaibhav, Bhotia, Tenzin Singhay, Kumar, Vaibhav, Chakraborty, Tanmoy

论文摘要

单词嵌入是单词语义和句法表示的标准模型。不幸的是,这些模型已被证明表现出由性别,种族和宗教偏见引起的不良单词关联。现有的用于单词嵌入的后处理方法无法减轻隐藏在单词矢量的空间排列中的性别偏见。在本文中,我们提出了一种新型的性别偏见方法Ran-Debias,不仅消除了单词矢量中存在的偏见,而且还改变了其相邻媒介的空间分布,在保持最小的语义偏移的同时,实现了无偏见的设置。我们还提出了一种新的偏见评估指标 - 基于性别的非法接近性估计(GIPE),该估计衡量了由于存在基于性别的偏见而导致的单词矢量中不适当的距离的程度。基于一系列评估指标的实验表明,RAN-DEBIAS在将接近偏见(GIPE)降低至少42.02%方面的最先进表现明显优于最先进。它还减少了直接偏见,增加了最小的语义干扰,并在下游应用程序任务(Coreference分辨率)中实现了最佳性能。

Word embeddings are the standard model for semantic and syntactic representations of words. Unfortunately, these models have been shown to exhibit undesirable word associations resulting from gender, racial, and religious biases. Existing post-processing methods for debiasing word embeddings are unable to mitigate gender bias hidden in the spatial arrangement of word vectors. In this paper, we propose RAN-Debias, a novel gender debiasing methodology which not only eliminates the bias present in a word vector but also alters the spatial distribution of its neighbouring vectors, achieving a bias-free setting while maintaining minimal semantic offset. We also propose a new bias evaluation metric - Gender-based Illicit Proximity Estimate (GIPE), which measures the extent of undue proximity in word vectors resulting from the presence of gender-based predilections. Experiments based on a suite of evaluation metrics show that RAN-Debias significantly outperforms the state-of-the-art in reducing proximity bias (GIPE) by at least 42.02%. It also reduces direct bias, adding minimal semantic disturbance, and achieves the best performance in a downstream application task (coreference resolution).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源