论文标题

关于卢卡斯序列的成员,这是加泰罗尼亚人数的产物

On members of Lucas sequences which are products of Catalan numbers

论文作者

Laishram, Shanta, Luca, Florian, Sias, Mark

论文摘要

We show that if $\{U_n\}_{n\geq 0}$ is a Lucas sequence, then the largest $n$ such that $|U_n|=C_{m_1}C_{m_2}\cdots C_{m_k}$ with $1\leq m_1\leq m_2\leq \cdots\leq m_k$,其中$ c_m $是加泰罗尼亚$ M $ th $ n <6500 $。如果卢卡斯序列的根是真实的,我们有$ n \ in \ {1,2、3、4、6、8、12 \} $。结果,我们表明,如果$ \ {x_n \} _ {n \ geq 1} $是pell方程的$ x $坐标的序列$ x^2-dy^2 = \ pm 1 $,则使用非noSquare Integer $ d> 1 $,然后是$ x_n = c_m $ $ $ $ $ $ n = 1 $ $ n = 1 $ n = 1 $ n = 1 $。

We show that if $\{U_n\}_{n\geq 0}$ is a Lucas sequence, then the largest $n$ such that $|U_n|=C_{m_1}C_{m_2}\cdots C_{m_k}$ with $1\leq m_1\leq m_2\leq \cdots\leq m_k$, where $C_m$ is the $m$th Catalan number satisfies $n<6500$. In case the roots of the Lucas sequence are real, we have $n\in \{1,2, 3, 4, 6, 8, 12\}$. As a consequence, we show that if $\{X_n\}_{n\geq 1}$ is the sequence of the $X$ coordinates of a Pell equation $X^2-dY^2=\pm 1$ with a nonsquare integer $d>1$, then $X_n=C_m$ implies $n=1$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源