论文标题

Schwarzschild-Tangherlini来自散射幅度的度量

Schwarzschild-Tangherlini Metric from Scattering Amplitudes

论文作者

Jakobsen, Gustav Uhre

论文摘要

我们提出了一个一般框架,该框架在任意维度上的schwarzschild-tangherlini指标可以从重力常数中的所有订单($ g_n $)中的散射幅度(即$ r_ r_ gauge)(即$ r_ gauge- gauge)中的所有订单衍生而来,并通过广义的de donde de donde donde de donde de donder-de donder-de donder-de donde donder-de donder-type type type type type type g_ $ g__ $ g_quge。该度量与协变量量规参数$ξ$无关,并遵守经典规格条件$g_σ= 0 $。我们在$ g_n $中明确计算出具有广义量规选择的度量标准,其中重力自相互作用变得很重要,这些结果验证了一环订单的一般框架。有趣的是,在概括任意维度之后,对径向坐标的对数依赖性出现在时空维度$ d = 5 $中。

We present a general framework with which the Schwarzschild-Tangherlini metric of a point particle in arbitrary dimensions can be derived from a scattering amplitude to all orders in the gravitational constant, $G_N$, in covariant gauge (i.e. $R_ξ$-gauge) with a generalized de Donder-type gauge function, $G_σ$. The metric is independent of the covariant gauge parameter $ξ$ and obeys the classical gauge condition $G_σ=0$. We compute the metric with the generalized gauge choice explicitly to second order in $G_N$ where gravitational self-interactions become important and these results verify the general framework to one-loop order. Interestingly, after generalizing to arbitrary dimension, a logarithmic dependence on the radial coordinate appears in space-time dimension $D=5$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源