论文标题

本地紧凑型抛光群的最小模型流动

Minimal model-universal flows for locally compact Polish groups

论文作者

Jahel, Colin, Zucker, Andy

论文摘要

令$ g $为本地紧凑的波兰人。如果考虑到$ y $的各种不变概率措施,我们可以在标准的Lebesgue空间上恢复每项免费的$ g $ $ g $的概率措施,即可恢复标准的Lebesgue空间上的每项免费操作,以至于同构为同构,我们可以收回$ g $ -flow $ y $的$ G $ -FLOW $ Y $。魏斯表明,对于可数$ g $,存在最小的模型 - 宇宙流。在本文中,我们将此结果扩展到所有本地紧凑的抛光群。

Let $G$ be a locally compact Polish group. A metrizable $G$-flow $Y$ is called model-universal if by considering the various invariant probability measures on $Y$, we can recover every free action of $G$ on a standard Lebesgue space up to isomorphism. Weiss has shown that for countable $G$, there exists a minimal, model-universal flow. In this paper, we extend this result to all locally compact Polish groups.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源