论文标题

seqxfilter:用于动态视觉传感器的记忆效率降级过滤器

SeqXFilter: A Memory-efficient Denoising Filter for Dynamic Vision Sensors

论文作者

Guo, Shasha, Wang, Lei, Chen, Xiaofan, Zhang, Limeng, Kang, Ziyang, Xu, Weixia

论文摘要

基于神经形态事件的动态视觉传感器(DVS)比基于框架的成像传感器具有更快的采样率和更高的动态范围。但是,它们对不需要的背景活动(BA)事件敏感。有一些过滤器可以基于时空相关性解决此问题。但是,它们要么是内存密集型或计算密集型。我们提出\ emph {seqxfilter},这是一种时空相关滤波器,它仅具有过去的事件窗口,该窗口具有O(1)空间复杂性并且具有简单的计算。我们通过在空间距离上应用不同的功能时分析事件的分布来探索事件与过去几个事件的空间相关性。我们找到了检查\ emph {seqxfilter}事件的时空相关性的最佳功能,最好将真实事件和噪声事件分开。我们不仅给出了过滤器的视觉降解效果,而且还使用两个指标来定量分析过滤器的性能。基于四个具有不同输出大小的DV记录的基于神经形态事件的数据集用于验证我们的方法。实验结果表明,\ emph {seqxfilter}的性能与基线NNB过滤器相似,但记忆成本和简单的计算逻辑。

Neuromorphic event-based dynamic vision sensors (DVS) have much faster sampling rates and a higher dynamic range than frame-based imaging sensors. However, they are sensitive to background activity (BA) events that are unwanted. There are some filters for tackling this problem based on spatio-temporal correlation. However, they are either memory-intensive or computing-intensive. We propose \emph{SeqXFilter}, a spatio-temporal correlation filter with only a past event window that has an O(1) space complexity and has simple computations. We explore the spatial correlation of an event with its past few events by analyzing the distribution of the events when applying different functions on the spatial distances. We find the best function to check the spatio-temporal correlation for an event for \emph{SeqXFilter}, best separating real events and noise events. We not only give the visual denoising effect of the filter but also use two metrics for quantitatively analyzing the filter's performance. Four neuromorphic event-based datasets, recorded from four DVS with different output sizes, are used for validation of our method. The experimental results show that \emph{SeqXFilter} achieves similar performance as baseline NNb filters, but with extremely small memory cost and simple computation logic.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源