论文标题
从社会痕迹中学习意见动态
Learning Opinion Dynamics From Social Traces
论文作者
论文摘要
意见动力 - 研究人们在社会环境中如何形成和发展的研究领域 - 传统上使用基于代理的模型来验证社会学理论的含义。这些模型编码了驱动舆论形成过程的因果机制,并具有易于解释的优势。但是,由于它们不利用数据的可用性,因此它们的预测能力是有限的。此外,参数校准和模型选择是手动和困难的任务。 在这项工作中,我们提出了一种推理机制,将其拟合到现实世界中的社会痕迹的生成性,类似于代理的观点模型。给定一组可观察到的物体(例如,代理之间的动作和交互),我们的模型可以恢复与过程动力学的假设兼容的最明显的潜在意见轨迹。这种类型的模型保留了基于代理的模型(即因果解释)的好处,同时添加了对实际数据进行模型选择和假设测试的能力。 我们通过将基于经典的观点动力学模型转化为其生成性对应物来展示我们的建议。然后,我们根据在线期望最大化来设计推理算法,以了解模型的潜在参数。这种算法可以从基于经典代理的模型生成的痕迹中恢复潜在意见轨迹。此外,它可以识别用于生成数据跟踪的最可能的宏参数集,从而允许对社会学假设进行测试。最后,我们将模型应用于Reddit的现实世界数据,以探讨有关反火效应影响的长期存在的问题。我们的结果表明,Reddit的政治对话中的影响较低。
Opinion dynamics - the research field dealing with how people's opinions form and evolve in a social context - traditionally uses agent-based models to validate the implications of sociological theories. These models encode the causal mechanism that drives the opinion formation process, and have the advantage of being easy to interpret. However, as they do not exploit the availability of data, their predictive power is limited. Moreover, parameter calibration and model selection are manual and difficult tasks. In this work we propose an inference mechanism for fitting a generative, agent-like model of opinion dynamics to real-world social traces. Given a set of observables (e.g., actions and interactions between agents), our model can recover the most-likely latent opinion trajectories that are compatible with the assumptions about the process dynamics. This type of model retains the benefits of agent-based ones (i.e., causal interpretation), while adding the ability to perform model selection and hypothesis testing on real data. We showcase our proposal by translating a classical agent-based model of opinion dynamics into its generative counterpart. We then design an inference algorithm based on online expectation maximization to learn the latent parameters of the model. Such algorithm can recover the latent opinion trajectories from traces generated by the classical agent-based model. In addition, it can identify the most likely set of macro parameters used to generate a data trace, thus allowing testing of sociological hypotheses. Finally, we apply our model to real-world data from Reddit to explore the long-standing question about the impact of backfire effect. Our results suggest a low prominence of the effect in Reddit's political conversation.