论文标题
变形振荡器代数$ \ mathsf {aq}(2,ν)$的星星产品
Star product for deformed oscillator algebra $\mathsf{Aq}(2,ν)$
论文作者
论文摘要
为变形的振荡器代数提供了Moyal Star产品的类似物。它包含几个同质的附加积分参数,在繁殖内核中概括了差异的Moyal恒星公式$ \ exp [iε_{αβ} \ partial^α\ partial^α\ partial^β] $。使用pochhammer公式,这些参数上的集成是在与$ z^x(1-z)类型的表达相关的riemann表面上进行的,其中$ x $和$ y $是任意的实数。
An analogue of the Moyal star product is presented for the deformed oscillator algebra. It contains several homotopy-like additional integration parameters in the multiplication kernel generalizing the differential Moyal star-product formula $\exp[iε_{αβ}\partial^α\partial^β]$. Using Pochhammer formula, integration over these parameters is carried over a Riemann surface associated with the expression of the type $z^x (1-z)^y$ where $x$ and $y$ are arbitrary real numbers.