论文标题

各向异性奇怪的星星与托尔曼 - 古乔维奇度量$ f(r,t)

Anisotropic strange star with Tolman-Kuchowicz metric under $f(R,T)$ gravity

论文作者

Biswas, Suparna, Shee, Dibyendu, Guha, B. K., Ray, Saibal

论文摘要

在当前文章中,我们使用tolman-kuchowicz type〜\ cite {tolman1939,kuchowicz1968} as $ f(r,t)$重力的背景下的各向异性对称奇怪的恒星{ C $没有奇异性,满足稳定性标准并且表现良好。我们使用匹配条件以及已知样品的群众和半径的观察值计算常数$ a $ a $ a $ a $ a $,$ b $,$ b $和$ c $的值。为了描述奇怪的夸克物质(SQM)分布,在这里我们使用了现象学MIT袋模型状态方程(EOS),其中密度曲线($ρ$)与径向压力($ P_R $)有关,将其作为$ p_r(r)= \ frac {1} {1} {3} {3} {ρ-4b_g)$。在这里,夸克的压力负责生成袋子常数$ b_g $。这项研究背后的动机在于发现具有奇怪恒星各种特性的非细菌性可接受的解决方案。该模型显示出与各种能源条件,TOV方程,Herrera的开裂状况以及Harrison-Zel $'$ Dovich-Novikov的静态稳定性标准的一致性。 EOS参数和绝热指数的数值也增强了我们的模型的可接受性。

In the current article, we study anisotropic spherically symmetric strange star under the background of $f(R,T)$ gravity using the metric potentials of Tolman-Kuchowicz type~\cite{Tolman1939,Kuchowicz1968} as $λ(r)=\ln(1+ar^2+br^4)$ and $ν(r)=Br^2+2\ln C$ which are free from singularity, satisfy stability criteria and also well behaved. We calculate the value of constants $a$, $b$, $B$ and $C$ using matching conditions and the observed values of the masses and radii of known samples. To describe the strange quark matter (SQM) distribution, here we have used the phenomenological MIT bag model equation of state (EOS) where the density profile ($ρ$) is related to the radial pressure ($p_r$) as $p_r(r)=\frac{1}{3}(ρ-4B_g)$. Here quark pressure is responsible for generation of bag constant $B_g$. Motivation behind this study lies in finding out a non-singular physically acceptable solution having various properties of strange stars. The model shows consistency with various energy conditions, TOV equation, Herrera's cracking condition and also with Harrison-Zel$'$dovich-Novikov's static stability criteria. Numerical values of EOS parameter and the adiabatic index also enhance the acceptability of our model.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源