论文标题

研究MIL合并过滤器对MIL任务的影响

Studying The Effect of MIL Pooling Filters on MIL Tasks

论文作者

Oner, Mustafa Umit, Kye-Jet, Jared Marc Song, Lee, Hwee Kuan, Sung, Wing-Kin

论文摘要

MIL模型中使用了不同的多个实例学习(MIL)合并过滤器。在本文中,我们研究了不同的MIL合并过滤器对MIL模型在现实世界MIL任务中的性能的影响。我们设计了一个基于神经网络的MIL框架,该框架具有5个不同的MIL合并过滤器:“ Max”,“ Mean”,“注意”,“分布”和“分发和注意力”。我们还在现实世界淋巴结转移数据集上制定了5个不同的MIL任务。我们发现,在任务中,我们的框架的性能在不同的过滤器中是不同的。我们还观察到,五个合并过滤器的性能也不同于任务。因此,对于每个MIL任务,选择正确的MIL合并过滤器对于更好的性能至关重要。此外,我们注意到具有“分布”和“分布引起注意”的模型在几乎所有任务中都始终如一地表现良好。我们将这种现象归因于基于“分布”的合并过滤器捕获的信息量。尽管基于点估计的合并过滤器,例如“ max”和“ Mean”,但产生分布的点估计值,但基于“分布”的池滤波器捕获了分布中的完整信息。最后,我们将神经网络模型的性能与“分布”合并过滤器与文献中有关经典MIL数据集的最佳MIL方法的性能进行了比较,并且我们的模型表现优于其他方法。

There are different multiple instance learning (MIL) pooling filters used in MIL models. In this paper, we study the effect of different MIL pooling filters on the performance of MIL models in real world MIL tasks. We designed a neural network based MIL framework with 5 different MIL pooling filters: `max', `mean', `attention', `distribution' and `distribution with attention'. We also formulated 5 different MIL tasks on a real world lymph node metastases dataset. We found that the performance of our framework in a task is different for different filters. We also observed that the performances of the five pooling filters are also different from task to task. Hence, the selection of a correct MIL pooling filter for each MIL task is crucial for better performance. Furthermore, we noticed that models with `distribution' and `distribution with attention' pooling filters consistently perform well in almost all of the tasks. We attribute this phenomena to the amount of information captured by `distribution' based pooling filters. While point estimate based pooling filters, like `max' and `mean', produce point estimates of distributions, `distribution' based pooling filters capture the full information in distributions. Lastly, we compared the performance of our neural network model with `distribution' pooling filter with the performance of the best MIL methods in the literature on classical MIL datasets and our model outperformed the others.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源