论文标题

一个具有自适应目标的上下文分层注意网络,用于对话状态跟踪

A Contextual Hierarchical Attention Network with Adaptive Objective for Dialogue State Tracking

论文作者

Shan, Yong, Li, Zekang, Zhang, Jinchao, Meng, Fandong, Feng, Yang, Niu, Cheng, Zhou, Jie

论文摘要

对话状态跟踪(DST)的最新研究利用历史信息来确定通常表示为插槽值对的状态。但是,由于缺乏对插槽和对话历史之间建模相互作用的强大机制,因此大多数人具有有效利用相关上下文的局限性。此外,现有方法通常忽略了插槽不平衡问题,而是不加区分的所有插槽,这限制了硬插槽的学习,并最终损害了整体性能。在本文中,我们建议通过采用上下文层次的注意网络来增强DST,不仅在单词级别和转弯级别上辨别相关信息,而且还学习上下文表示。我们进一步提出了一个自适应目标,以通过在训练过程中动态调整不同插槽的权重来减轻插槽不平衡问题。实验结果表明,我们的方法分别达到了Multiwoz 2.0和Multiwoz 2.1数据集的52.68%和58.55%的关节准确性,并实现了新的最先进的性能,并具有相当大的改进( +1.24%和 +5.98%)。

Recent studies in dialogue state tracking (DST) leverage historical information to determine states which are generally represented as slot-value pairs. However, most of them have limitations to efficiently exploit relevant context due to the lack of a powerful mechanism for modeling interactions between the slot and the dialogue history. Besides, existing methods usually ignore the slot imbalance problem and treat all slots indiscriminately, which limits the learning of hard slots and eventually hurts overall performance. In this paper, we propose to enhance the DST through employing a contextual hierarchical attention network to not only discern relevant information at both word level and turn level but also learn contextual representations. We further propose an adaptive objective to alleviate the slot imbalance problem by dynamically adjust weights of different slots during training. Experimental results show that our approach reaches 52.68% and 58.55% joint accuracy on MultiWOZ 2.0 and MultiWOZ 2.1 datasets respectively and achieves new state-of-the-art performance with considerable improvements (+1.24% and +5.98%).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源