论文标题
使用深度学习对图形信号的联合预测和插值
Joint Forecasting and Interpolation of Graph Signals Using Deep Learning
论文作者
论文摘要
我们使用网络节点子集获得的过去信号测量值来解决预测网络信号快照的问题。该任务可以看作是多元时间序列预测和图形信号插值的组合。对于许多应用程序,部署高粒度网络是不切实际的,这是一个基本问题。我们的解决方案将复发性神经网络与图形信号处理中的频率分析工具相结合,并假设数据相对于基础图足够平滑。所提出的方法的表现优于最先进的深度学习技术,尤其是当仅访问图形信号的一小部分时,考虑到两个不同的现实世界数据集:美国的温度和西雅图的速度流量。结果还表明,我们的方法可以处理嘈杂的信号和丢失的数据,使其适合许多实际应用。
We tackle the problem of forecasting network-signal snapshots using past signal measurements acquired by a subset of network nodes. This task can be seen as a combination of multivariate time-series prediction and graph-signal interpolation. This is a fundamental problem for many applications wherein deploying a high granularity network is impractical. Our solution combines recurrent neural networks with frequency-analysis tools from graph signal processing, and assumes that data is sufficiently smooth with respect to the underlying graph. The proposed approach outperforms state-of-the-art deep learning techniques, especially when only a small fraction of the graph signals is accessible, considering two distinct real world datasets: temperatures in the US and speed flow in Seattle. The results also indicate that our method can handle noisy signals and missing data, making it suitable to many practical applications.