论文标题
神经控制变体
Neural Control Variates
论文作者
论文摘要
我们提出了神经控制变体(NCV),以减少参数蒙特卡洛整合的无偏差。到目前为止,应用控制变体的方法的核心挑战是找到了廉价集成的整数近似值。我们表明,一组神经网络可以面对这一挑战:近似积分形状和另一个神经网络的归一流流,该流程会渗透到积分方程的解决方案。我们还建议利用神经重要性采样器来估计原始集成和学习控制变化之间的差异。为了优化所得的参数估计器,我们得出了理论上最佳的,方差最小化损耗函数,并提出了一种替代性的综合损失,用于实践中稳定的在线培训。当应用于光传输模拟时,神经控制变体能够匹配其他无偏见的方法的最新性能,同时提供了开发更多性能,实用的解决方案的手段。具体而言,我们表明,对于高阶弹跳,学到的光场近似具有足够的质量,使我们能够省略误差校正,从而大大降低噪声,以可见的可见偏见为代价。
We propose neural control variates (NCV) for unbiased variance reduction in parametric Monte Carlo integration. So far, the core challenge of applying the method of control variates has been finding a good approximation of the integrand that is cheap to integrate. We show that a set of neural networks can face that challenge: a normalizing flow that approximates the shape of the integrand and another neural network that infers the solution of the integral equation. We also propose to leverage a neural importance sampler to estimate the difference between the original integrand and the learned control variate. To optimize the resulting parametric estimator, we derive a theoretically optimal, variance-minimizing loss function, and propose an alternative, composite loss for stable online training in practice. When applied to light transport simulation, neural control variates are capable of matching the state-of-the-art performance of other unbiased approaches, while providing means to develop more performant, practical solutions. Specifically, we show that the learned light-field approximation is of sufficient quality for high-order bounces, allowing us to omit the error correction and thereby dramatically reduce the noise at the cost of negligible visible bias.