论文标题
跨域模仿学习与双重结构
Cross-Domain Imitation Learning with a Dual Structure
论文作者
论文摘要
在本文中,我们考虑了跨域模仿学习(CDIL),其中目标域中的代理商通过观察源域中的专家演示而无需访问任何奖励功能,从而在目标域中学习了在目标领域中表现良好的策略。为了克服模仿学习的领域差异,我们提出了一种双结构化学习方法。提出的学习方法从每个输入观察结果中提取了两个特征向量,以便一个向量包含域信息,另一个向量包含策略专家信息,然后通过合成包含目标域和策略专家信息的新功能向量来增强功能向量。提出的CDIL方法对几个木佐的任务进行了测试,其中域差异由图像角或颜色确定。数值结果表明,所提出的方法在CDIL中表现出优于其他现有算法的性能,并且与没有域差异的模仿学习的性能几乎相同。
In this paper, we consider cross-domain imitation learning (CDIL) in which an agent in a target domain learns a policy to perform well in the target domain by observing expert demonstrations in a source domain without accessing any reward function. In order to overcome the domain difference for imitation learning, we propose a dual-structured learning method. The proposed learning method extracts two feature vectors from each input observation such that one vector contains domain information and the other vector contains policy expertness information, and then enhances feature vectors by synthesizing new feature vectors containing both target-domain and policy expertness information. The proposed CDIL method is tested on several MuJoCo tasks where the domain difference is determined by image angles or colors. Numerical results show that the proposed method shows superior performance in CDIL to other existing algorithms and achieves almost the same performance as imitation learning without domain difference.