论文标题

Twitter数据采样如何偏见美国选民行为表征

How Twitter Data Sampling Biases U.S. Voter Behavior Characterizations

论文作者

Yang, Kai-Cheng, Hui, Pik-Mai, Menczer, Filippo

论文摘要

在线社交媒体是公众讨论政治问题的关键平台。结果,研究人员使用这些平台的数据来分析公众意见和预测选举结果。最近的研究揭示了不真实的参与者的存在,例如恶意社交机器人和巨魔,这表明并非每个信息都是合法用户的真实表达。但是,社交数据流中不真实活动的普遍性仍不清楚,因此很难根据此类数据来评估分析的偏见。在本文中,我们旨在使用2018年美国中期选举的Twitter数据来缩小这一差距。多动性帐户在体积样本中的代表性过多。我们将它们的特征与使用快速和低成本启发式的随机抽样账户和自我认同的选民进行比较。我们表明,与可能的选民相比,过度活跃的帐户更有可能表现出各种可疑行为并共享低含义的信息。随机帐户与可能的选民更相似,尽管他们的可能性略高于表现出可疑行为。我们的工作在使用在线观察时提供了对偏见的选民特征的见解,这强调了基于社交媒体数据的政治问题研究中不真实参与者的重要性。

Online social media are key platforms for the public to discuss political issues. As a result, researchers have used data from these platforms to analyze public opinions and forecast election results. Recent studies reveal the existence of inauthentic actors such as malicious social bots and trolls, suggesting that not every message is a genuine expression from a legitimate user. However, the prevalence of inauthentic activities in social data streams is still unclear, making it difficult to gauge biases of analyses based on such data. In this paper, we aim to close this gap using Twitter data from the 2018 U.S. midterm elections. Hyperactive accounts are over-represented in volume samples. We compare their characteristics with those of randomly sampled accounts and self-identified voters using a fast and low-cost heuristic. We show that hyperactive accounts are more likely to exhibit various suspicious behaviors and share low-credibility information compared to likely voters. Random accounts are more similar to likely voters, although they have slightly higher chances to display suspicious behaviors. Our work provides insights into biased voter characterizations when using online observations, underlining the importance of accounting for inauthentic actors in studies of political issues based on social media data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源