论文标题
经典XXX和XXZ Heisenberg旋转链的变量的新分离
New Separation of Variables for the Classical XXX and XXZ Heisenberg Spin Chains
论文作者
论文摘要
我们提出了具有简单扭曲矩阵的经典可集成XXX和XXZ旋转链的变量的非标准分离。我们表明,对于这种扭曲矩阵的情况,人们可以互换经典分离功能$ a(u)$和$ b(u)$的作用,并构建一组新的分离变量,与与标准的Sklyanin的标准分离变量相比,满足了更简单的分离方程和更简单的亚伯方程。我们表明,对于某些扭曲矩阵的情况,可以用动作角度坐标直接识别构造的分离变量。
We propose a non-standard separation of variables for the classical integrable XXX and XXZ spin chains with degenerate twist matrix. We show that for the case of such twist matrices one can interchange the role of classical separating functions $A(u)$ and $B(u)$ and construct a new full set of separated variables, satisfying simpler equation of separation and simpler Abel equations in comparison with the standard separated variables of Sklyanin. We show that for certain cases of the twist matrices the constructed separated variables can be directly identified with action-angle coordinates.