论文标题
关于日志规范模型的有限性
On finiteness of log canonical models
论文作者
论文摘要
令$(x,δ)/u $为klt对,而$ q $为凸的凸面。假设相对Kodaira尺寸是非负的,那么当边界分隔在相对紧凑的合理多层$ q $中变化时,只有有限的日志规范模型有限。结果,我们显示了具有实际系数的KLT对$(x,δ)/u $的日志规范模型的存在。
Let $(X, Δ)/U$ be klt pairs and $Q$ be a convex set of divisors. Assuming that the relative Kodaira dimensions are non-negative, then there are only finitely many log canonical models when the boundary divisors varying in a relatively compact rational polytope in $Q$. As a consequence, we show the existence of the log canonical model for a klt pair $(X, Δ)/U$ with real coefficients.