论文标题

关于日志规范模型的有限性

On finiteness of log canonical models

论文作者

Li, Zhan

论文摘要

令$(x,δ)/u $为klt对,而$ q $为凸的凸面。假设相对Kodaira尺寸是非负的,那么当边界分隔在相对紧凑的合理多层$ q $中变化时,只有有限的日志规范模型有限。结果,我们显示了具有实际系数的KLT对$(x,δ)/u $的日志规范模型的存在。

Let $(X, Δ)/U$ be klt pairs and $Q$ be a convex set of divisors. Assuming that the relative Kodaira dimensions are non-negative, then there are only finitely many log canonical models when the boundary divisors varying in a relatively compact rational polytope in $Q$. As a consequence, we show the existence of the log canonical model for a klt pair $(X, Δ)/U$ with real coefficients.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源