论文标题
混合学习帮助无活性限制过滤算法以增强AC OPF解决方案时间
Hybrid Learning Aided Inactive Constraints Filtering Algorithm to Enhance AC OPF Solution Time
论文作者
论文摘要
最佳功率流(OPF)问题包含许多约束。但是,平等约束以及一组有限的主动不平等约束包含足够的信息,以确定问题的可行空间。在本文中,提出了基于混合监督的回归和分类学习算法,以识别仅基于节点功率需求信息的AC OPF的主动和不平等限制集。提出的算法是使用多个分类器和回归学习者结构的。分类器与回归学习者的组合增强了主动 /非活动约束识别程序的准确性。所提出的算法修改了OPF可行空间,而不是需求的直接映射OPF。从设计空间中删除了非活动约束,以构建截断的AC OPF。该截断的优化问题可以比以较少的计算资源为原始问题更快地解决。几个测试系统的数值结果显示了所提出的算法在预测主动和非活动约束并构建截短的AC OPF方面的有效性。我们已经发布了有关ARXIV上所有模拟的代码,并将数值研究中使用的数据上传到IEEE DataPort作为开放访问数据集。
The Optimal power flow (OPF) problem contains many constraints. However, equality constraints along with a limited set of active inequality constraints encompass sufficient information to determine the feasible space of the problem. In this paper, a hybrid supervised regression and classification learning based algorithm is proposed to identify active and inactive sets of inequality constraints of AC OPF solely based on nodal power demand information. The proposed algorithm is structured using several classifiers and regression learners. The combination of classifiers with regression learners enhances the accuracy of active / inactive constraints identification procedure. The proposed algorithm modifies the OPF feasible space rather than a direct mapping of OPF results from demand. Inactive constraints are removed from the design space to construct a truncated AC OPF. This truncated optimization problem can be solved faster than the original problem with less computational resources. Numerical results on several test systems show the effectiveness of the proposed algorithm for predicting active and inactive constraints and constructing a truncated AC OPF. We have posted our code for all simulations on arxiv and have uploaded the data used in numerical studies to IEEE DataPort as an open access dataset.