论文标题

线和立方表面中点模量的环形压缩的几何解释

Geometric interpretation of toroidal compactifications of moduli of points in the line and cubic surfaces

论文作者

Gallardo, Patricio, Kerr, Matt, Schaffler, Luca

论文摘要

众所周知,与适当的球人的baily-borel压缩相关的某些与模量相关的GIT压缩相关。在本文中,我们表明它们各自的环形压缩是在MMP背景下定义的稳定对模量的同构。此外,我们对射影线中的八个标记点进行了精确的混合霍奇理论解释。

It is known that some GIT compactifications associated to moduli spaces of either points in the projective line or cubic surfaces are isomorphic to Baily-Borel compactifications of appropriate ball quotients. In this paper, we show that their respective toroidal compactifications are isomorphic to moduli spaces of stable pairs as defined in the context of the MMP. Moreover, we give a precise mixed-Hodge-theoretic interpretation of this isomorphism for the case of eight labeled points in the projective line.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源