论文标题
序数分类的有效性指标:形式特性和实验结果
An Effectiveness Metric for Ordinal Classification: Formal Properties and Experimental Results
论文作者
论文摘要
在序数分类任务中,必须将项目分配给具有相对顺序的类,例如积极,中立,阴性分析。值得注意的是,序数分类任务的最流行的评估指标要么忽略相关信息(例如,每个类别上的精度/回忆忽略其相对顺序)或假设其他信息(例如,平均平均误差假定类之间的绝对距离)。在本文中,我们提出了一个用于序数分类,紧密评估度量的新指标,该指标源于测量理论和信息理论。我们对合成数据和NLP共享任务数据的理论分析和实验结果表明,所提出的指标同时捕获了来自不同传统任务的质量方面。此外,它概括了一些流行的分类(标称量表)和误差最小化(间隔量表)指标,这取决于其实例化的测量量表。
In Ordinal Classification tasks, items have to be assigned to classes that have a relative ordering, such as positive, neutral, negative in sentiment analysis. Remarkably, the most popular evaluation metrics for ordinal classification tasks either ignore relevant information (for instance, precision/recall on each of the classes ignores their relative ordering) or assume additional information (for instance, Mean Average Error assumes absolute distances between classes). In this paper we propose a new metric for Ordinal Classification, Closeness Evaluation Measure, that is rooted on Measurement Theory and Information Theory. Our theoretical analysis and experimental results over both synthetic data and data from NLP shared tasks indicate that the proposed metric captures quality aspects from different traditional tasks simultaneously. In addition, it generalizes some popular classification (nominal scale) and error minimization (interval scale) metrics, depending on the measurement scale in which it is instantiated.